If  $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that   $| z_1 | = | z_2 |=1$ and  $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies

  • A

    $|w_1 |=1$

  • B

    $|w_2 |=1$

  • C

    $R({w_1}\overline {{w_2}} ) = 0$

  • D

    All the above

Similar Questions

Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then

Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is

  • [JEE MAIN 2023]

The minimum value of $|2z - 1| + |3z - 2|$is

If $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$then $amp(z)-amp ( - z) = $

If $a > 0$ and $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$, has magnitude $\sqrt {\frac{2}{5}} $, then $\bar z$ is equal to:

  • [JEE MAIN 2019]